EU Natura 2000 Biogeographical Seminar Process

The management of mountain forest habitat types in Natura 2000 sites: experience and case studies from the Continental Biogeographical region (Networking seminar) Šumava National Park, Czech Republic, 7–9 November 2017

Restoration and monitoring of degraded montane peatlands

- aims, challenges and lessons learned

Katharina Strobl

Chair of Restoration Ecology, Technische Universität München

Claudia Schmidt NP Bayerischer Wald, LIFE+ Projekt "Moore, Fließgewässer und Schachten"

Jan Sliva NEEMO GEIE /Particip GmbH

Montane peatland habitats

- 7110* Active raised bogs
- **7120** Degraded raised bogs still capable of natural regeneration
- 91D0* Bog woodland
- 7140 Transition mires and quaking bogs
- 7150 Depressions on peat substrates of the *Rhynchosporion*
- \rightarrow Accumulation of peat
- → Low diversity, but unique species (habitat specialists)
- → Adaptations to oxygen-poor, acidic and nutrient-poor conditions: e.g. mykorrhiza, carnivory, aerenchyma, ...

2

Restoration and conservation process

Restoration and conservation process

Degradation

Drainage

Afforestation

Restoration and conservation process

6

- Water regime
- Impacts of drainage

- Vegetation
- (Fauna)

Status survey and determination of goals

→ Assessment of overall status

→ Determination of goals

Zerbe et al. 2009

Schumann & Joosten 2008

neemo

1) Site conditions

→ Realistic objectives and targets

2) Limitations

- Irreversible changes of peat characteristics and hydrologic conditions
- Nitrogen deposition
- Global Change
- Fragmentation

Full "regeneration" often not feasible

June 2016 Before measure implementation

August 2016 After spruce removal

October 2016 After measure implementation

April 2017

3) Time scale of peatland restoration

Habitats of Community interest: 10 - 30 years

Ecosystem functions (acrotelm formation, peat accummulation): 100 - 1000 years

Summary

Thorough analysis and consideration of **feasible restoration goals** (case by case)

- 1. Restoration towards near-natural state
- or
- 2. Alternative restoration targets

Summary

or

Thorough analysis and consideration of **feasible restoration goals** (case by case)

- 1. Restoration towards near-natural state
- 2. Alternative restoration targets:
 - In Natura 2000 sites: special attention to protected habitats and species
 - but also
 - Maximum possible recovery of important ecosystem functions and services (climate mitigation, process conservation, water retention etc.)

Selection of suitable restoration methods

Selection of suitable restoration methods

Restoration / improvement of abiotic site conditions

- \rightarrow Rewetting
- \rightarrow (Deforestation)
- \rightarrow (Improvement of the catchment area)

Supporting measures for habitat development → Re-introduction of species

Restoration measures

Planning and construction of rewetting dams

Large number of different

techniques according to

different site conditions

пп

21

Selection of suitable restoration methods

Montane peatlands → inclined types: Spring mires – sloping mires – percolation mires

Terrestrialization Mire

Water Rise Mire

HOMIZONTAL TYPES

INCUMED TYPES

 \rightarrow Rewetting measures difficult

Restoration measures

Complete infilling of drainage ditches on slopes

Restoration measures

Selective tree removal or deforestation

Restoration and conservation process

Expected trajectory from literature¹

No peatland has reached all these goals so far.²

Monitorings are often done too early and very short (1-3 years).³ **Progress is not always linear**.⁴ neemo

1) SUDING 2011

26

Monitoring possible restoration trajectories (not only peatlands!) Restoration success as a dynamic concept across **space** and **time**¹

b с Site 2 Period of intervention Success (relative to target criteria) (if any) Time Unintended All sites converge All deviate from towards target divergence across target goal state over time sites

 \rightarrow Same measures do not always lead to same target

Monitoring

Comparison of sites of ,different age'

Restoration measures: Rewetting by ditch blocking and tree removal **Goal**: Recovery of characteristic biodiversity (species, structure, composition)

Mapping of vegetation, dragonflies and butterflies

Results in "pictures"

Results: Vegetation diversity

- 50 vascular plants, 53 mosses & liverworts (13 Sphagnum ssp.)
- 16 red list ssp. (Germany or Bavaria)
- 16 habitat specialists, e.g. *Andromeda polifolia, Drosera rotundifolia, Eriophorum vaginatum, Vaccinium oxycoccos*
- \rightarrow But not everywhere and at every successional stage

Monitoring: Example ,Fichtelgebirge' neemo **Results: Vegetation diversity** All species **Specialists** ac Plant habitat specialists Plant species number 0 51 05 reference 2 5 Non-restored 0-1 Non-restored 0-1 Time since restoration Time since restoration

Results: Vegetation diversity

All species

Specialists

Results: Vegetation diversity

All species

Specialists

Results: Vegetation composition

- \rightarrow Progression towards reference conditions
- → Dissimilarity still > 0.4 (some species still absent: A. polifolia, D. rotundifolia)
- \rightarrow Progression to be continued?

neemo

Results: Dragonflies

- 34 species, 14 red list ssp.
- 7 habitat specialists e.g. Aeshna juncea, Coenagrion hastulatum, Leucorrhinia dubia, Somatochlora alpestris

Results: Butterflies

36 species, only generalists
→ Despite presence of host plants

- Better than degraded state, worse than intact state
- \rightarrow Is this restoration success?

- Depends on the goals Better than degraded state, worse than intact state -
- \rightarrow Is this restoration success?

- Depends on the goals Better than degraded state, worse than intact state —
- \rightarrow Is this restoration success?
- Vegetation composition moves in the right direction -
- \rightarrow Is this progression to be continued?

- Depends on the goals Better than degraded state, worse than intact state -
- \rightarrow Is this restoration success?
- Longer monitoring needed Vegetation composition moves in the right direction -
- \rightarrow Is this progression to be continued?

- Depends on the goals Better than degraded state, worse than intact state -
- \rightarrow Is this restoration success?
- Longer monitoring needed - Vegetation composition moves in the right direction
- \rightarrow Is this progression to be continued?
- **Missing species** -
- \rightarrow How can we improve the current state?

Conclusions and (open) questions

- Depends on the goals Better than degraded state, worse than intact state -
- \rightarrow Is this restoration success?
- Longer monitoring needed - Vegetation composition moves in the right direction
- \rightarrow Is this progression to be continued?
- Missing species -
- \rightarrow How can we improve the current state?
- \rightarrow Is site or dispersal limitation the problem?

Improve site !! e.g. dam reinforcement **Improve connectivity** and reintroduce species

Depends on the causes!

Thank you for your attention!

Katharina Strobl (katharina.strobl@tum.de) Chair of Restoration Ecology, Technische Universität München

Claudia Schmidt (claudia.schmidt@npv-bw.bayern.de) NP Bayerischer Wald, LIFE+ Projekt "Moore, Fließgewässer und Schachten"

Jan Sliva (jan.sliva@neemo.eu) NEEMO GEIE /Particip GmbH

Project ,Fichtelgebirge' funded by the Bavarian State Ministry of the Environment and Consumer Protection

funded by Bavarian State Ministry of the Environment and Consumer Protection

Appendix

Phytometer experiments

When common descriptive approaches are not sufficient, **experimental approaches** may help:

Phytometers are experimentally transplanted to indicate between site differences via their performance (survival, growth, reproduction)

Comparison of phytometer performance and natural populations.

Phytometer experiments

Phytometer survival and reproduction (%) in comparison with naturally occuring populations (1/0)

Vegetation composition

Results: Vegetation composition

- \rightarrow Clear difference to pre-restoration community
- → Progression towards reference?

Vegetation composition

- \rightarrow Clear difference to pre-restoration community
- → Progression towards reference, some species still absent: A. polifolia, D. rotundifolia

neemo