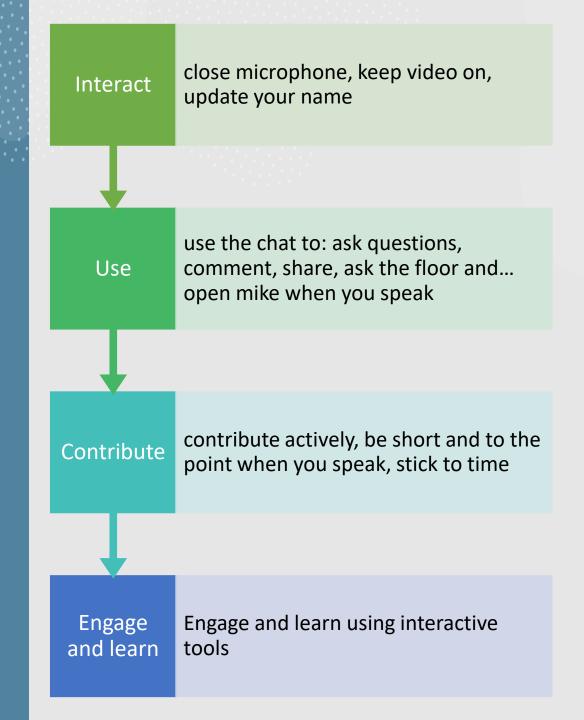


EUROPARC


Coexistence with large carnivores: the role of Protected Areas.

Participatory workshop

You can make it successful:

Are you there?

IMPACT biodiversity and management

- Invest: on skills and capacities
- Inspire: Protected Areas
- Innovate: improve practice
- Influence: decision making and management
- Inform: PAs and stakeholders

INFLUENCE

INFORM

INVEST

INSPIRE

NNOVATE

European policy and initiatives to strengthen coexistence

- **Marco Cipriani**, European Commission

- Katrina Marsden, EU Platform on coexistence between people and large carnivores

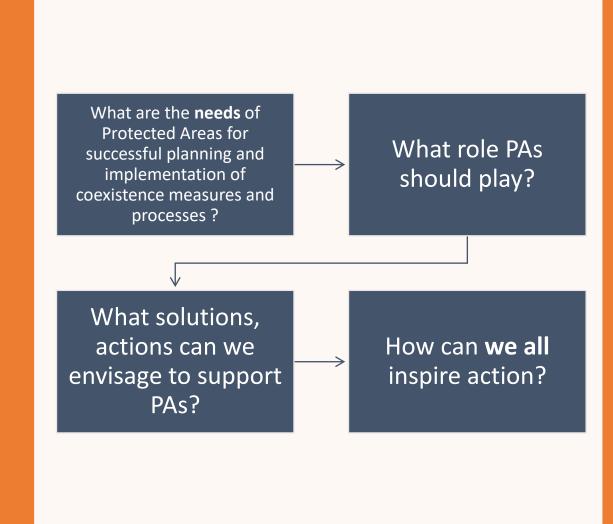
Participatory exercise - You: Protected Areas needs and possible actions

Case studies: processes and initiatives for coexistence - Valeria Salvatori, Istituto di Ecologia Applicata.

- Simone Angelucci, Majella National Park.
- **Guillermo Zamora**, Junta de Andalucia.

Your objective today

Why


did you join this workshop? join <u>www.menti.com</u>

Code: **97 82 18**

Our objective today

European policy and initiatives to strengthen coexistence

- Marco Cipriani European Commission
- Katrina Marsden EU Platform for Coexistence between People and Large Carnivores

Time for answers and questions

4 breakout groups

Automatically join preset groups

Answer the 2 questions using Jamboard

30 minutes to discuss, share and learn

Take a break at 11 – <mark>join</mark> back at 11,15!

Group session

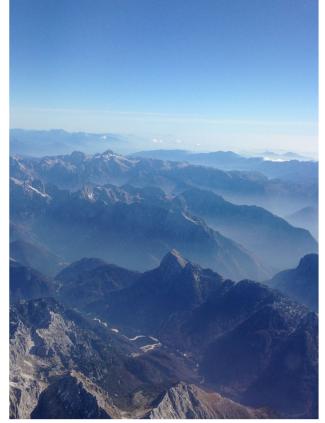
- Scroll ← → to go to your group number
- Dig the questions, don't stop at the surface!
- Use sticky notes to write your ideas

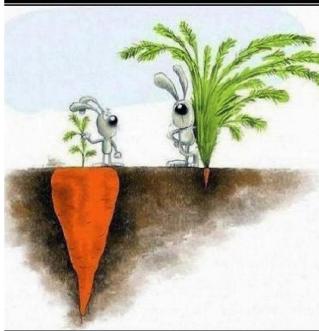
													0 ii jamboard google.com (i) č																			۵															
												Fur	nds 🛩	Biogeo	g Semi	nars 🛩	EURO	PARC >	Apple	D Go	ogle Map	s No	tizie 🗸	logoff.a:	spx?of	f&src=e	ich Ip	iù conos	iciuti 🛩	CAP ~	EU v	Park	cs v L	arge Car	nivores :	~											
	Large	Carni	vores	Work	shop																		<	1/4]]	>																	1	å ¢	Condivi	ridi	I
_	-	Q		Incore	osta lo			0	alla a	conten																																	_			_	-
5	2	ه	×	impo	osta Io	stond	10	Cano	cella c	conten	iuti de	ei fran	ne																																		
X.			10	8.	×	61	ž.	$\widetilde{\mathcal{R}}$	3	×	18	3	×	-	1				11		1.1		1		1		a 1		1.8	1		4.	¥. 3	61 F	. 18	30	×.	10	8 S	6 6	i i	×	30	×.	16	8	
×.	Gro	up 1		\mathcal{R}	$^{\circ}$		2	\mathbb{R}^{2}	\otimes	3	\otimes	\sim	2		O	V	٧a	ır	a	S	b	e	TT (er		30)e	X	IS	τε	en	IC	e			$^{\circ}$	×.		8. 3	6 3	3	\sim	8	ž.	8	\otimes	
		e.;	(0)			(8)		-				- 0					(8)				×		c	(0)		085			10.5		(4)						х.	(4)	10 D	R. (#		100				101	
ŝ	1			30°	•0	Ch	al	le	no	ge	S	&	n	ee	ds	5 - 6		ŝ.						\sim	8	1	8) - 8	19	20	÷				6.3	D	né	cił		2	oti	or	ċ	20	÷	(0)	$\overline{\mathfrak{A}}$	
8	3			$^{\circ}$	-	For		Die	at	ec	+	ad		rio	à			2							2		e)		\mathcal{F}	×.			8	÷	-	13	SIL	ie.	a	cti	U.	19,	$l \ge 1$	5	2	\mathcal{F}^{1}	
ÿ.	÷.					Ų	ų,	-jı	υ	ęu	ų	гų	1	i e	ą	٠,		ÿ.	÷.		X 94		- 4		ÿ.	÷.	i.)	- 26	5.	×.		÷.	÷.	- 1	nit	ia	tiv	es	, S	ol	uti	or	IS	×.	οk.	$\mathcal{G}_{\mathcal{C}}$	
÷.				90			÷.	8	8	÷			÷	20				÷.					*		÷					÷	20	×			10		÷		ee		÷			÷	28		
×			(4)		$\sim 10^{-10}$	(41)					1.00			100			141				× - 18			(Φ^{+})							(a)			en 19				- (1)		a (a)		100			10.	(4))	
ž.	8.	9) - 9		$\tilde{\mathbf{x}}_{i}$	÷.	$\left(\theta \right)$	$\tilde{\mathcal{X}}$	$\widetilde{\mathcal{K}}$	\mathcal{H}	×	\mathcal{R}	(\mathbf{x})	$\tilde{\mathcal{A}}$	(\bar{e})	\tilde{s}_{i}	×.	$\left[\theta \right]$	×.	×.				÷.ž	$\langle \phi \rangle$	×.	×.	8 - 3	- 68	\sim	×.	(\bar{e})	8.	ă I	ś1 - 3		\mathbb{R}^{2}	×.	e.	i	é – G	×	∞	$^{\circ}$	×.	16	\geq	
1	8			8	\sim	30	2	$^{\circ}$		8	\otimes	30	÷.		\mathcal{X}^{*}	\sim	3	8	8		6. 3		- 16	30	8	18	8. 1		35	÷.		8	8.1	1	18	35	÷.		e 1	68		(\mathbf{e})	30	8	1.0	38	
•.		a); – 3	(4)	10	2.0	(a)		-				100		100		2.0	(Φ^{+})		1	a.)			e	(Φ^{+})		100	ac 1		100		(a)					100	х.	-	- C - C -	a: (a)		100	10.1		10	(0))	
2	8.			×.	÷.ě	$\langle \phi \rangle$	$\widetilde{\mathcal{A}}$	$\widetilde{\mathcal{A}}$	\mathcal{H}	×	\mathcal{R}	30	×.	(\bar{e})	\tilde{s}_{i}	\mathcal{X}	(ϕ)	ž.	e.				18	$\langle \phi \rangle$	ž.	×.	8)		8	×.		ä. –	ă l	6		30	×.	0	i	é lé	ž	\sim	8	ž.	16	\otimes	
3	8.	e - 3		\mathcal{H}	18		X		35	×	8	×	2		\mathcal{H}^{1}			š.	8				- 18		3	8	8		×	×		8	8			8	×		8. 9	6		\sim	8	×.	8	8	
			(0)		$\sim 10^{-10}$	(Φ)								(0)		$\sim 10^{-10}$	(4)				×			(0)		100					(0)				1.0		х.			E. (0)		(10)		х.			
9	1			30°		(0)	8	\mathcal{R}	$\overline{\mathcal{C}}$	8	19	Ξ.	÷			$^{\prime}$ \approx		8	1		8 9		1.16		8	10		19	3	÷		1	÷.	6.3	19	æ(÷		10 ¹ 10	é S	3	$\overline{\mathbb{S}}$	20	÷	10	$\widetilde{\mathfrak{A}}($	
				\sim	\sim		8	\mathbb{R}^{2}	\mathcal{H}	8	\sim	2			\sim	\sim		8			к. з				8		e -)	- 2	2	8			8	e 1		\mathcal{F}	×					\sim	\mathcal{F}	8	2	\mathcal{F}^{2}	
	÷.	i.)		$\tilde{\mathcal{H}}$	\sim		¥	ŝŝ.	Sc.	×.	зê	5	×		$\tilde{\mathcal{H}}$	×.		ÿ.	÷.						¥.	÷.	5)	- 26	\sim	X		÷.	÷.	a) - 3		$\tilde{\mathcal{A}}_{i}$	×.		i	e	÷.,¥	~ 10	50	X.	οÊ	$\tilde{\mathbf{x}}_{i}$	
).				ж.			2	3		$\frac{1}{2}$	20		÷					÷							2		<u>e</u> (18		÷				8. 8	10		÷	8	e	6.3	. 2	200		÷	20		
1		e):	- (4)		-	(Φ^{+})						(4)		- (6.)	10	1	(4e)	×		10				(Φ^{+})		100	ac 1		100		(a)				-	100	х.	-	 	e (4		100	10.1		14	(4))	
	8.			8.	ιä.	(θ)	$\widetilde{\mathcal{A}}$	$\widetilde{\mathcal{A}}$	\mathcal{H}	×	\otimes	30	×.	(\bar{e})	\tilde{s}_{i}	$\widetilde{\mathcal{A}}$	(θ)	ž.	8		i 18		- 3	$\langle \phi \rangle$	×.	8	8)	- 18	\sim	×.		8.	ă I	6 9	. 18	30	×.	0	i 3	é i i	×.	(0)	8	×.	16	\otimes	
	8			\mathcal{X}	\mathbb{R}^{2}	(θ_i)	3		\mathbb{R}	×	\otimes	30	2		\mathcal{H}^{*}	\sim		×.	8				18	(9)	5	8	8	- 8	\otimes	×		\mathcal{X}^{-1}	8.3		- 8	SI	tak	cet	10	Ide	ars	a n	iee	be	S	\otimes	
х.			(0)		$\sim 10^{-10}$	(Φ)								(Φ)		$\sim 10^{-10}$	(Φ_{i})				×			(Φ)				10			(Φ)			e	1.0												
8	1			$\left i \right $	\sim		ŝ	3	$\overline{\mathcal{C}}$	8)®	ē.	ŝ			ΞĒ.		8			8 0		1.00		÷.	1		19	Ē	ŝ		10		6.3	19	11	1.1	10	te	Ct	ed	A	re	as	5.	ē(
8	2			$^{\circ}$	$^{\circ}$	Υ.	ð.	3	${\mathcal T}^{(i)}$	2	2	9	1	(2)	÷	*		8			K 3			\mathbb{R}^{n}_{i}	2	2	e -)	- 2	2	5	1		*	6 B	1	25	Χ.		e	8		\sim	$\mathcal{T}^{(i)}_{i}$	Χ.	9	\mathcal{T}^{i}	
¥.	a l		10	÷.	÷		¥	сй,	Эċ,	×	зĕ	÷.	X		÷.	÷		ÿ.	a l		K De				×	×.	5)	1.0	5.	×		÷.	÷.	6. 3	10	(\mathbf{x})	×.		i	2	÷,	сĕ.	50	×.	сйč	ā:	
÷				90	\mathcal{A}	3	2	3	8	2			÷			я.		÷			÷				2		8 - E			÷		ж.	× 1	1			÷		e	6. 3	3) <u>æ</u>		÷	20		
2		a.:	- (4)	10	20	(4)						(0)		141	10	1	(4r)	2					e	(+)		1	90 - S		100		(a)				1.00		х.	-	ec : 04	e: (a)		100			10.	(0)	
ž.	8.	9 9		8.	×.	$\left(\theta \right)$	ž	ιê.	×	×	×.	3	ž	$\left \hat{\theta} \right $	\tilde{s}_{i}	×	(θ)	ž.	8				- 3	$\langle \phi \rangle$	×.	8	8)	- 18	\sim	×.		8.	ž I	61 - F		30	×.	0	i	é G	×.	\otimes	30	×.	16	3	
×.	8.5	8.3		\mathcal{X}	18		×.		3	×	8	3	×		\mathcal{X}^{*}	\mathbb{R}	(\mathbf{R})	×.	8				18	(8)	3	8	8.3		$^{\circ}$	×		\mathcal{X}^{-1}	ж. 3	8. 3		\mathcal{S}	×		8. 3	8 . 9	3	\otimes	8	X	8	8	

Case studies

- Valeria Salvatori, Istituto di Ecologia Applicata.
- Simone Angelucci, Majella National Park.
- Guillermo Zamora, Junta de Andalucia.

Archeological discovery in Switzerland


While you listen to the case studies, please consider the followings:


- How can I improve communication, damage prevention and partnership building?
- What do I need to overcome those issues?

SUCCESS it's not always what you see

THANK YOU

