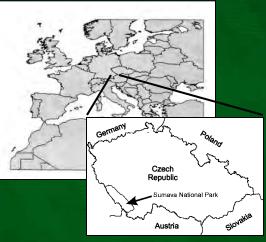
Mire conservation and restoration

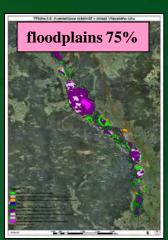
in the Sumava National Park



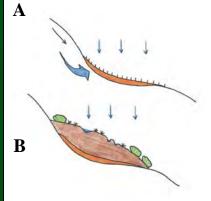
Ivana Bufková

Sumava National Park ivana.bufkova@npsumava.cz

Sumava National Park

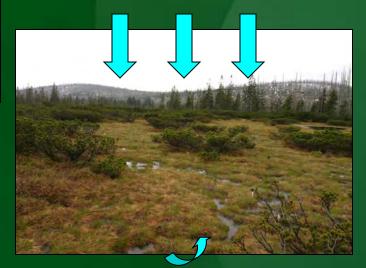


ŠUMAVA NATIONAL PARK (70 000 ha)	Area (ha)	% NP area
Mires	6 566	10 %
Other wetlands	14 930	21 %
All wetlands - total	20 536	31 %



- shallow peat layer
- higher pH
- oligo- to mezotrophic
- spruce mires, birch mires, poor fens, mire meadows

A/ MINEROTROPHIC MIRES - supplied by groundwater



transitional mires are in between

- deep peat layer (3-8 m)
- low pH
- dystro- to oligotrophic
- raised bogs

B/ OMBROTROPHIC MIRES (bogs) - supplied by rainwater

Distribution of mires in the Sumava NP

valley raised bogs with bog pine forest

upland mountain raised bogs

□ more than <u>6000 ha of mires</u>

□ in altitudes 700-1200m a.s.l.

1990 – Ramsar Site Sumavska raseliniste peatlands

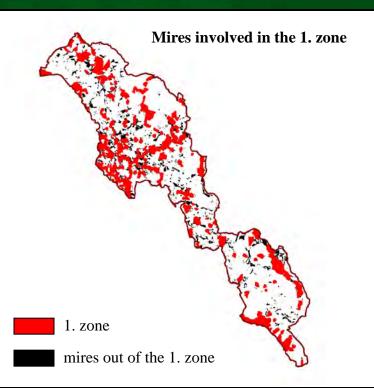
minerotrophic mires (mainly spruce mires and poor fens)

valley raised bogs

Mires (NP total)		6 566 ha	10 %
	bogs	1 587	2 %
	minerotrophic mires	4 982	8 %

Mires as landscape phenomenon

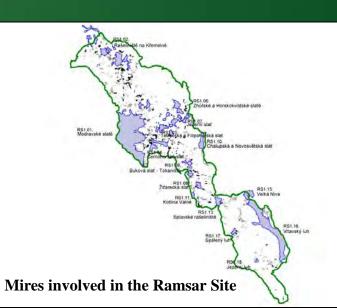
rare species and communities
 islands of northern nature
 biodiversity


1.

memory of Ice Age - <u>relic habitats</u> and <u>species</u>

<u>water retention</u> in landscape
 supply of groundwater sources

- local climatic condition
- > enhancement of short water cycle in the landscape
- carbon storage


Mires and current zonation of the Sumava NP

Mire type	NP (total ha)	1.zone (ha)	mires within 1. zone (%)
Bogs	1706	1500	88%
Spruce mires	1548	932	60%
Poor fens and meadow mires	958	437	46%

Mires - different management approach

Primary mire ecosystems

raised bogs bog woodland transitional mires

Non-intervention management

with initial re-wetting of drained sites

Disturbed mires
(all types)

Restoration (starting phase)

Secondary mire ecosystems

meadow mires

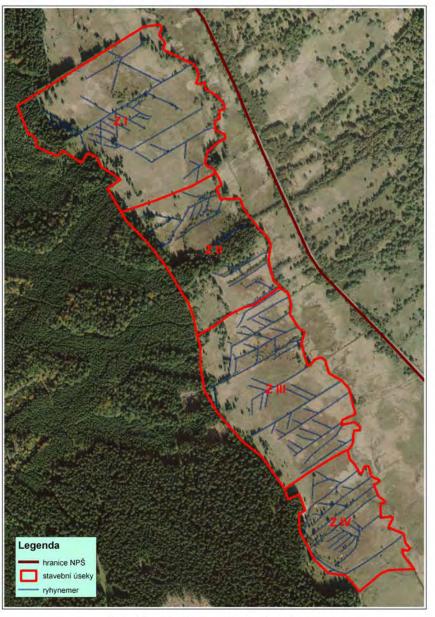
Active management

including initial re-wetting of drained

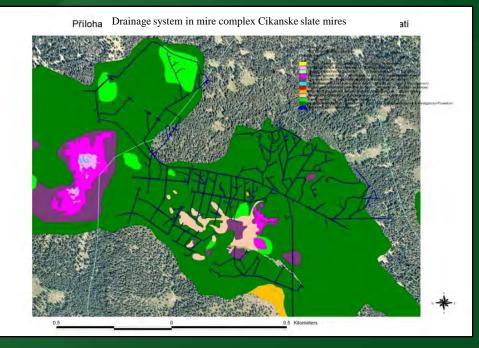
sites

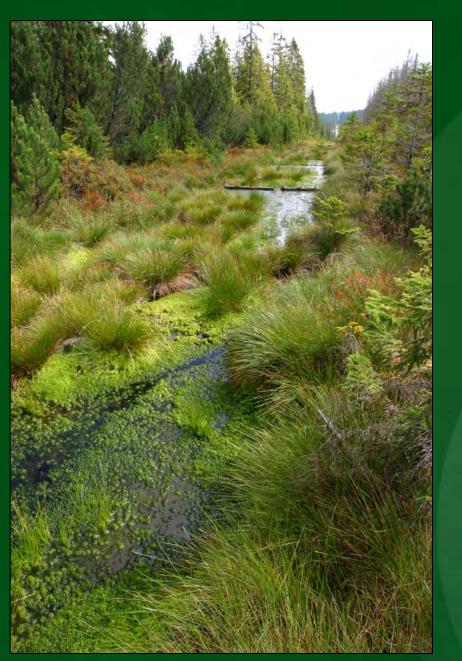
Use of mires - anthropogenic impacts

- peat cutting
- □ agriculture use grasslands, pastures
- □ forestry
- □ accessibility, infrastructure
- □ water reservoirs, dams
- □ stream regulation



- hydrology drainage
- ➤ eutrophication
- mechanical disturbances
- ➤ imisions
- lost of biodiversity




Obr. 1: Rozčlenění zájmového území na stavební úseky

Past drainage

- more than 70% of mires influenced by drainage (mire survey 2004-2005)
- 2 periods (19th century, 60-80s of the 20th century)
- predominantly surface drainage
- □ scale of degradation changes

Mire Restoration Programme

since 1999primarily focused on disturbed hydrology

Primary objectives:

- 1. Re-establishment of natural hydrology
- 2. Enhancement peat-forming processes
- **3.** Mitigate or stop biodiversity losses
- 4. Involvement of people into mire conservation

General approach

RE-WETTING

- From upstream sites downstream
- entire "hydrological units"
- priority statement criteria

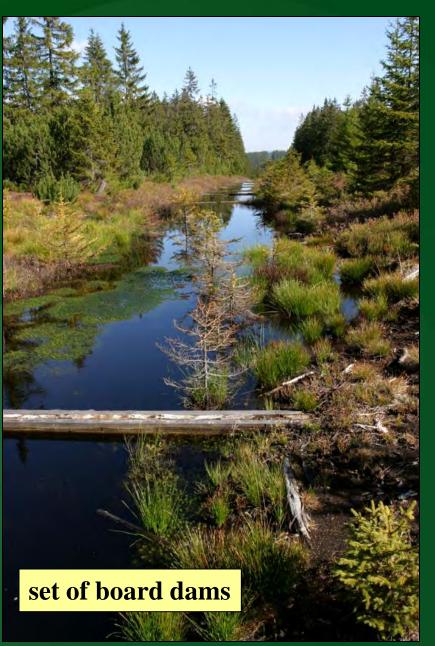
TARGET WATER TABLE CONCEPT

Detailed objectives:

- 1. raising water table
- 2. re-establishing of natural flows of water in mires
- 3. reducing of water losses

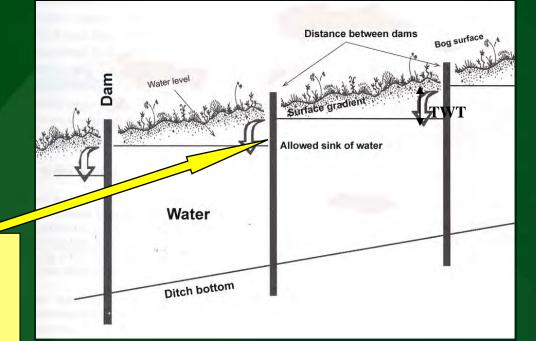
Restoration method - blocking and infilling of ditches

cascade of board dams + ditch infilling


WHY??

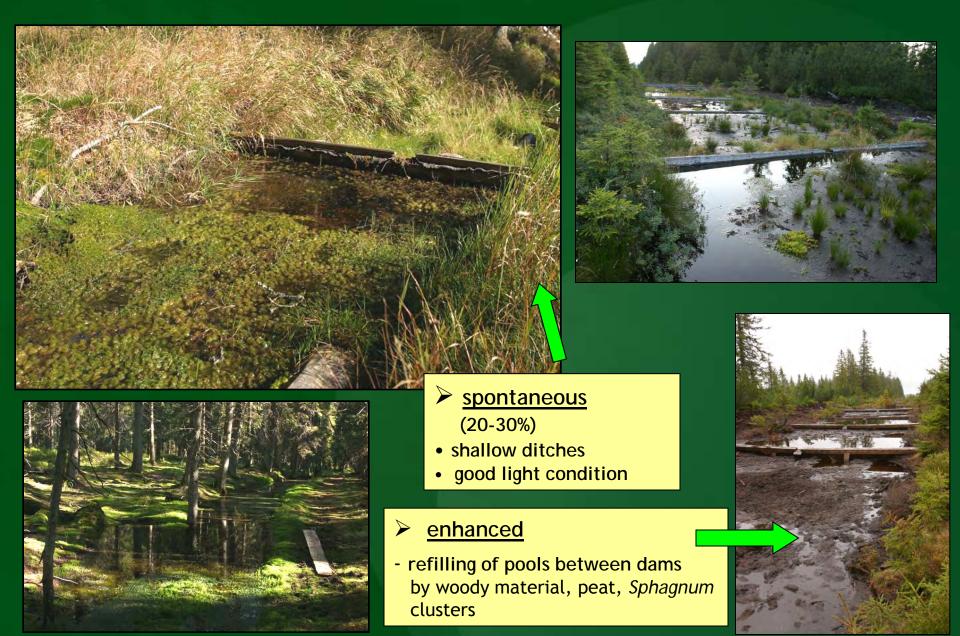
- > Specific features of mountain mires:
- small-scale mires
- lack of peat for daming and infilling
- <u>sloping gradient</u> frequent erosion
- hardly accessable sites

TARGET WATER TABLE CONCEPT

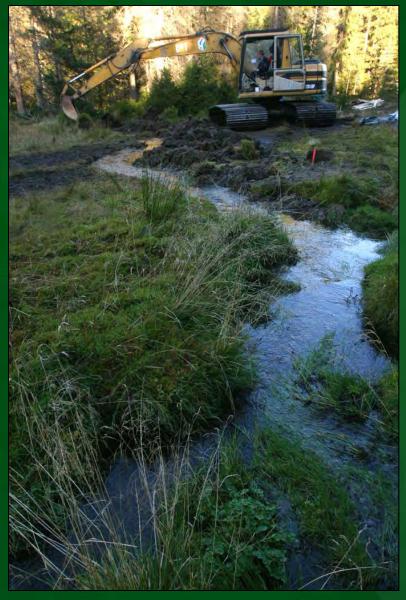

Target water table concept (TWT)

Mountain mires - <u>sloping surface</u> dam cascades

TWT is a concept for judging dam number and distribution

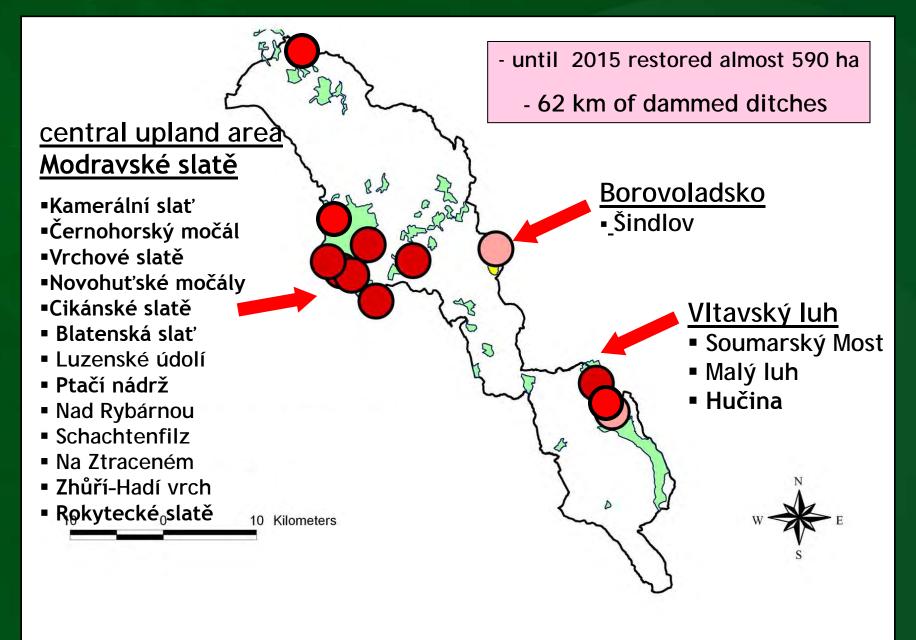

- <u>TWT</u> corresponds to natural water table in distinct mire types
- <u>TWT</u> = maximum sink of water level in front of the dam
- mire/vegetation type determining TWT and surface gradient are key variables to judge dam distribution

Infilling of ditches - enhanced terrestrialisation


Gradual disappearing of ditches from landscape

about 590 ha of mires was restored until 2015

more than 62km of drainage ditches were blocked


Re-establishment of natural water flows !!!

- to divert water onto the mire (respecting the earlier flows)
- small and shallow feeder ditches
- restoration of original capillar streams!

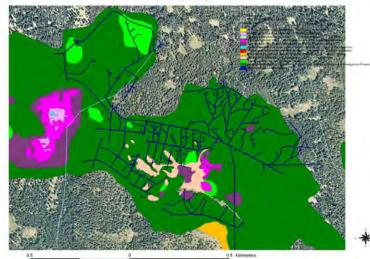
Implemented restoration projects until 2014

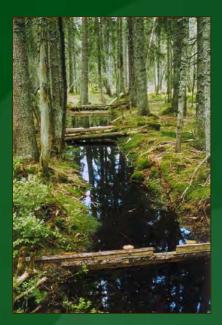
Case studies: Sloping raised bogs and spruce mires - upland

Case studies: Steep sloping spruce mires - upland area

ČERNOHORSKÝ MOČÁL MIRE - II. phase

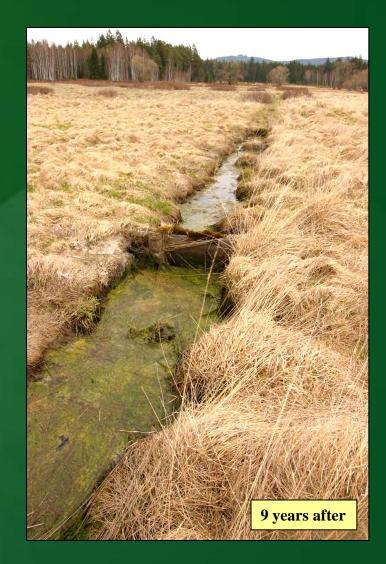
- along former "Iron curtain"
- no TWT rules
- to stop large erosion
- 80 ha, ditches ca 1,8 km
- ditch-digging spoil available
- 2013-2014 damming by excavators
- restoring of capillar streams
- 115 000 EUR (100m ditch = ca 1500 EUR)

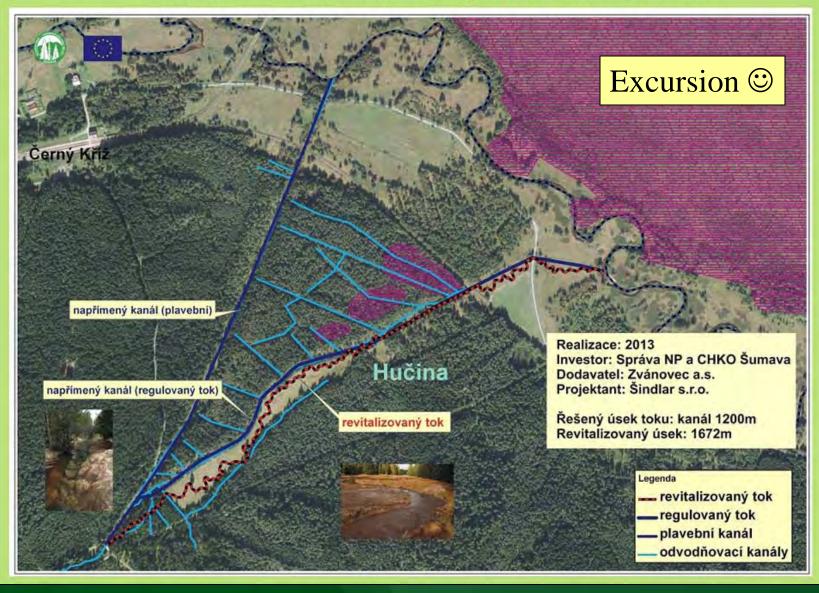



Rewetted raised bogs - upland area

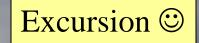
Spruce mires – upland area

Příloha č. 8: Inventarizace druhotné hydrologické sítě v oblasti Cikánských slatí





Floodplain sedge mires MALÝ LUH MIRE



Restoration of valley mire together with mountain stream - HUČINA

Revitalizace dolního toku Hučiny v Hornovltavském luhu

Restoration of industrially cut peatbog

total area: 70ha mire type: valley raised bog with bog pine forest implementation: 1999-2006

Restoration measures:

Soumarský Most

- damming of ditches
- forming of shallow surface depressions
- mulch material from adjacent sedge meadows to enhance
- recolonisation of bare peat layers and reduce evaporation

Project implementation – subcontracts (national or EU funds, NP budget)

Manual work without heavy machines

- unaccessable sites
- vulnerable habitats

Limited use of heavy machines - excavators

- only accessable sites
- highly degraded
- transport of materials
- dam instalation and infilling

Involvement of public - "People for mires"

Involvement of people in mire restoration

- visitors of the Sumava NP, local people, NGOs, students,
- private companies since 2011
- Weeks for mires (since 2005, mainly NGOs)
- Days for mires (regularly since 2008)

Implemented restoration projects until 2014

Site	Area (ha)	Number of dams	Length of the dammed ditches (km)	Year	Costs (Cz)	Financial sources
Kamerální slať	3,2		0,7	1999, 2004	98 000	National Park budget
Novohuť ské močály	56,5	346	3,4	2003 - 2004	779 962	National Park budget
Vrchové slatě + Malá slať	26,5	286	3,9	2003 - 2004	300 741	National Park budget
Cikánské slatě	121,8	1336	14,5	2003 - 2006	1 523 360	National Park budget
Malý luh	37,5	211	1,4	2004	112 186	National Park budget
Chalupská slať - Šindlov	25,6		1,8	2004	328 876	National Park budget
Blatenské slatě I + II	40,6	264	2,9	2005 - 2006	457 682	National Park budget
Luzenské svahy I -Luzenská slať - Březnické slatě	14,8		4,5	2004 - 2006	1 053 056	National Park budget
Hučina	17,4	221	2,8	2005	246 327	National Park budget
Biskupská slať	1,1	-	0,3	2005	61 156	National Park budget
Ptačí nádrž	7,8			2006 - 2007	326 257	National Park budget
Černohorský močál - l etapa	23,1	148	1,6	2006 - 2011	344 550	National Park budget
Na Ztraceném	17,1	223	1,9	2009	711 108	National Park budget
Schachtenfilz	5,4	203	1,2	2008	621 745	National Park budget
Nad Rybárnou	5,3	135	1,2	2008	549 765	National Park budget
Pod Prameny Vltavy	16	300		2006	646 000	national funds
Soumarský Most	55	500	9	2003 - 2004	3 985 000	national funds
Hučina	12,4	221	1,2	2013	1 900 000	EU funds (Operational Programme)
Černohorský močál - II etapa	67	596	2,1	2013-2014	3 226 666	EU funds (Operational Programme)
Rašeliniště na Zhůřském potoce	31	1285	7,4	2014	6 507 933	EU funds (Operational Programme)
SUMA	585,1	6275	61,8		23 780 370	

area: 590 ha blocked ditches: 62 km restored streams: ca 2,3 km

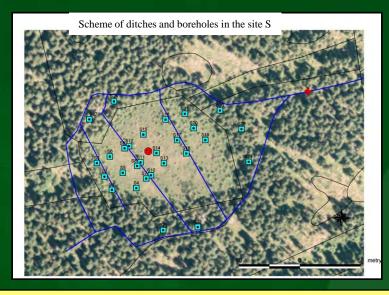
ca 850 000 EUR

Mire research and monitoring

- coordinated with the Mire Restoration Programme

Project: "Ecology of drained mires and possibilities for restoration" supported by the Czech Ministry of the Environment (VaV SP/2d1/113/07) in 2005-2010

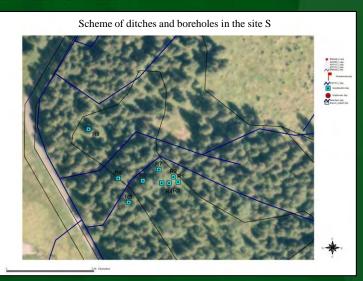
MAIN GOALS:
to study degradation changes in mires with disturbed hydrology
to evaluate the success of restoration



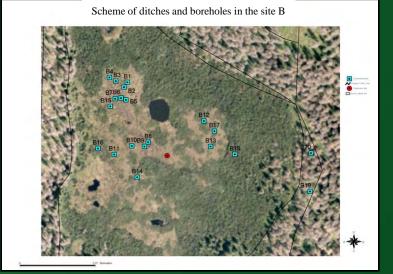
What is response of mires to restoration?

- how restoration influences mire hydrology, hydrochemistry and microclimate condition?
- how it can influence water quality and runoff in the concerned catchment area?
- is restarting of peat-forming processes possible?
- how it is reflected in biodiversity?
- are there different responses between distinct mire types?

Were implemented restoration measures successful?


2008 – restoration of drained sites

Methods - monitoring design


drained

before restoration
 (3 years)
 after restoration

habitats: - ombrotrophic peatbogs - spruce mires since 2007 – poor sedge fens

Nad Rybárnou - heavy drained

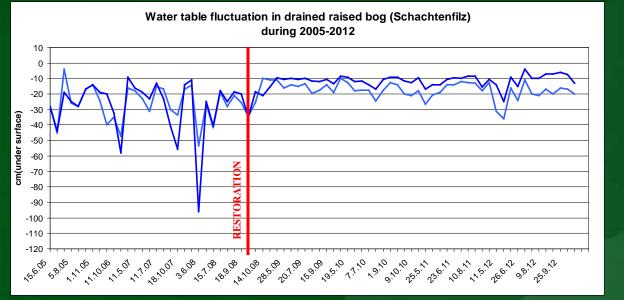
Blatenská slať - intact

Environmental variables measured

permanent plots (98) with associated water wells were established to characterise different mire sites

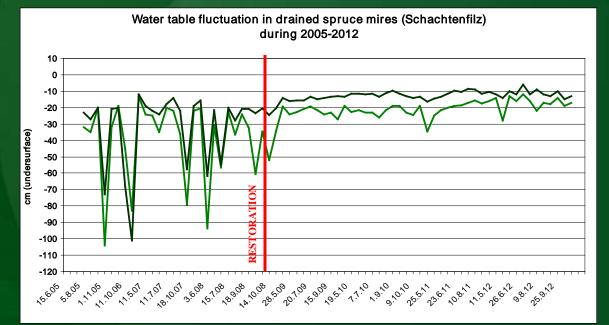
□ <u>monitored variables</u>:

- water table
- runoff
- water chemistry (pH, conductivity, DOC, SO4, NO3, NH4, PO4, Ca, Mg, Al, Fe monthly)
- precipitation
- microclimate (air temperature and humidity)
- vegetation (1x1m permanent plots)

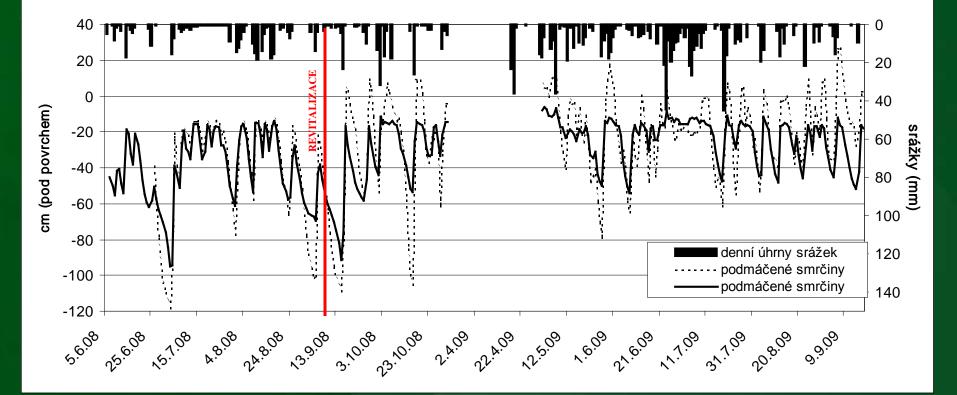


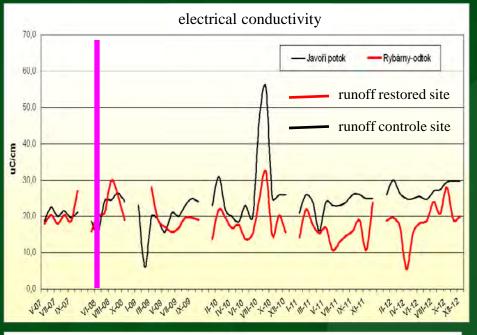
Positive effect of restoration on hydrology

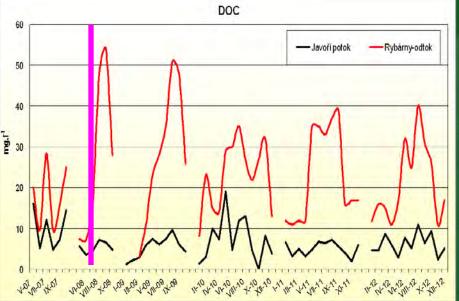
OMROTROPHIC BOGS

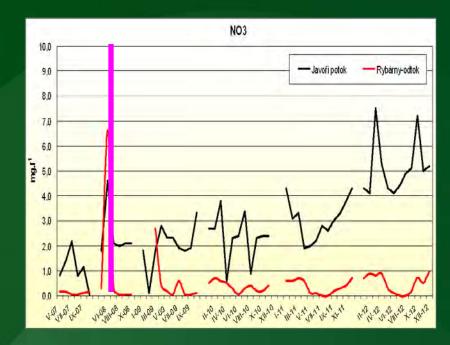

- groundwater independent
- > immediate quick response
- ➢ water table raised up
- amplitude of WT fluctuation decreased

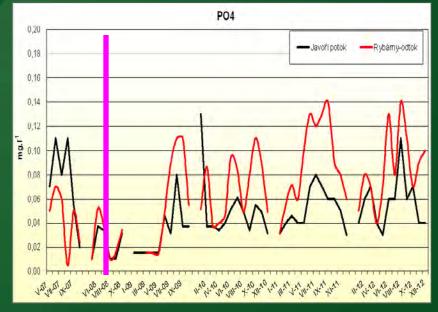
MINEROTROPHIC MIRES – groundwater dependent


- groundwater dependent
- \succ response similar to raised bog

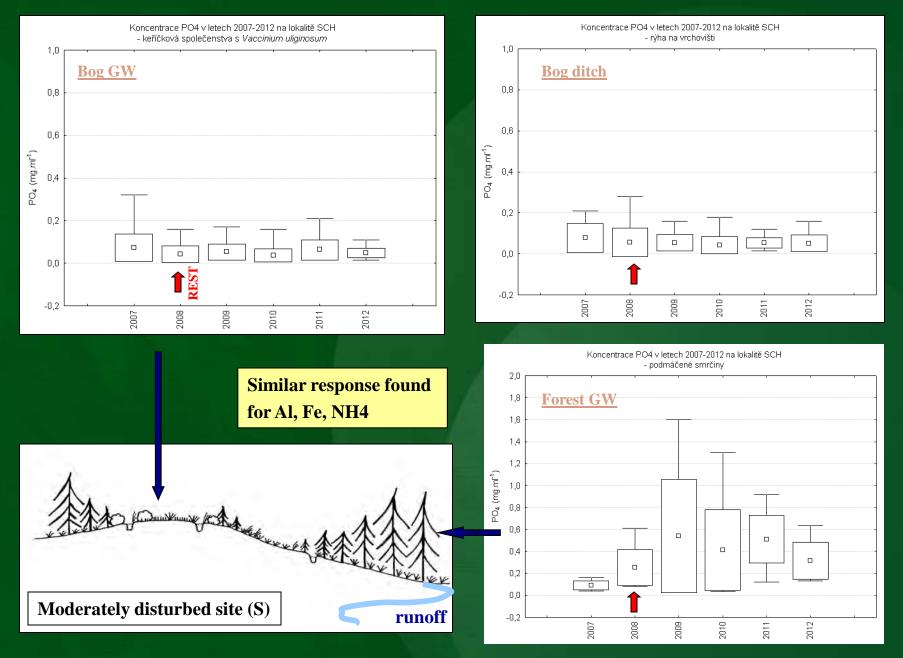



Water table position in drained wet forests (Sch) before and after restoration


Hladina podzemní vody v porostech podmáčených smrčiny v období 2008-2009 (site R)



Water quality in the restored catchments



Hydrochemistry response of different mire types - PO4

Positive effect of reatoration on mire vegetation

- spontaneous re-development of wet surface features (hollows) 4 years after restoration
- re-development of mire-forming vegetation - proportion of *Sphagnum* mosses
- rare species Listera cordata 2008 (50 palnts), 2012 (ca 400 platnts)

Conclusions

- □ **target water table** concept appropriate for restoration of sloping mountain mires
- **positive effect of restoration on hydrology** similar response in different mire types
 - raised up WT, reduced fluctuation
- **hydrochemistry** response is different for distinct mire types:

- hydrochemistry response was much pronounced in minerotrophic mires (especially spruce mires)

- water quality is highly influenced by proportion of distinct mire types restored in the catchment
- > early and long-term responses of mires are different
- □ about 82% of restoration measures could be assessed as succesful

Thank you for your attention

František Stíbal Eva Zelenková Jan Mokrý Miroslav Mäntl Eva Loskotová

Aknowledgement: Andrea Kučerová Ladislav Rektoris Jan Pokorný

Landscape without wetlands is landscape without water