Mapping of invasive alien plants along the common middle section of river Ipoly (Hungary / Slovakia): methodology, management, evaluation

András Schmotzer

Bükk National Park Directorate, Hungary

"Managing invasive plant and animal species in the protected areas of Central and Eastern Europe" WS-Hortobágy, 03.05.2016.

Topics

- Alien invasive plant species and connections with floodplains
- Regional scale survey of invasive plants along the Ipoly (SK: Ipel', D: Eipel) river / in different scales: catchment area active floodplain - litoral zone
- Investigations have to based the proper management (erradication) schemes

- Rivers are one of the most important <u>eco-corridors</u>
- Riverine habitats are one of the <u>most invaded habitats</u> (beside ruderal habitats) shorelines are typical <u>ecotons</u> between the wetland and the water body)
- Distribution patterns along floodplains show many similarities in the case of ,,good" (protected, threathened) and invasive plant species in regional scale (river corridor plants ,,*Stromtalplanzen*" see Burkart 2001)

Floodplains are regarded as **'landscape sinks'** – the main reason of the success of invasive plant species

- Inflowing debris and flooding create canopy gaps
- Floods bring propagules (seeds, plant fragments, floating mats) of opportunistic species
- Flooding supplies water and nutriens that accelarate invasion

after ZEDLER – KERCHER (2004)

Regional invasive surveys at Ipoly catchment area

- Aim of the study was to investigate the state of the invasiveness of the studied area
- In the frame of EU Intereg ill. NatuRegio project (2005 and 2010/2011)
- Complex metodology:
- sampling areas / transects (200 m^{2}) at Ipoly river and tributaries in the catchment area

 Dot-mapping along the riverside in the common border line section (between Balassagyarmat – Kalonda municipalities; altogether 2x52 km)

About the methodology

Remore sensing versus data collecting in fieldwork

- Cost efferctive, but time demanding
- Shaded shoreline of the river with sparse tree cover → not sufficient for airborne imagery
- First invader populations of IAS with small extent of density are much more detectable in terrain
- Possiblility for mapping other floristic occurences

Figure 2 Map of the milkweed (Asclepias syriaca) infestation detected at study area 02 (Hugyag) on a tru-color image.

Burai et al. (2011) WHISPERS conference

Cross-border approach

Study area

Landscape pattern - settlements

- altogether 24 settlements (parts) HU: 10 and SK: 14
- altogether 53,6 km line of settlements attaches the floodplain HU: 31,9 km and SK: 21,7 km
- declining population, economic underdeveloped regions, different land use

Balassagyarmat

Results - in numbers

- Nr. of (dot-mapped) records: 4.634
- **HU**: 1512 records **SK**: 3121 records
- "TOP 5 species" in abundance:

Aster lanceolatus: 914 Echinocystis lobata: 735 Bidens frondosa: 639 Helianthus tuberosus agg.: 383 Asclepias syriaca: 380

Result - categorisation of the species

Analyses of neopyton species occuring in wetland habitats (32 species):

- casual: 7 species
- naturalised: 12 species
- invasive: 13 species

Balassagyarmat

Szécsény

Categorisation of the species

CASUAL (7)	NATURALISED (13)	INVASIVE(14)
Abutilon theoprasti	Ambrosia artemisiifolia	Acer negundo
Ailanthus altissima	Conyza canadensis	Amorpha fruticosa
Celtis occidentalis	Erigeron annuus	Asclepias syriaca
Elaeagnus angustifolia	Galinsoga parviflora	Aster spp.
Galinsoga ciliata	Impatiens parviflora	Bidens frondosa
Lindernia dubia	Juglans regia	Echinocystis lobata
Lycopersicon esculentum	Morus alba	Fraxinus pennsylvanica
	Oxalis stricta	Helianthus tuberosus agg.
	Parthenocissus spp	Impatiens glandulifera
"EXPECTANT" SPECIES (2)	Robinia pseudo-acacia	Reynoutria x bohemica
Iva xanthiifolia	Veronica persica	Solidago canadensis
Rudbeckia laciniata	Vitis vulpina	Solidago gigantea
		Xanthium italicum
1	1	

New floristic data! – *Lindernia dubia*

Results – dissemination drivers

- normal and weightened measurement (for 32 species)
- anemo- and zoochoria are dominated, but
- also variable dispersion ways \rightarrow wellcorreleated with dispersal routes

Evaluation in floristic level

More classification possibilities upon the distribution patterns:

- I. well-distributed and dispersed species in the whole studied area
- II. species which spread from downstream
- III. species which spread from upstream

Pattern I/1. Aster lanceolatus

Characteristics of the species:

- creates homogenous stripes along the river bed
- The abandoned parcels of the settlements are regarded important secondary infection sources
 up to 1.000 m² large homogeneous patches

Pattern I/2. Bidens frondosus

Characteristics of the species:

a 'newcomer' – spreads intensively after the high floods of the year 2010
better colonisation ability than the relative B. tripartita (Köck 1988)
cause significant economic damage (devaluation of meadows, collapse of grazing)

Pattern II. Asclepias syriaca

Characteristics of the species:

- invaded rapidly the river section with dikes
- occur in wet locations also! (changing of habitat)
- more scattered in northward
- the forest plantations are important secondary infection locations
- spontaneous spreading, but cultivated

Pattern III/1. *Reynoutria x bohemica*

Characteristics of the species::

- Mostly concentrates along the very riverside locations
- In upper parts (ruderal habitats) it is very common (Lučenec, SK)
- Spread to southward (Nógrádszakál Bussa)
- Significant secondary infestion localities (role of municipalities!)

Spreading routes, infection sources I.

- The **<u>Ipoly river</u>** continues to extend the invasive species propagules (esp. hydrochoric species)
- The outfall of water inflow (<u>brooks</u>) from the hilly areas deliver large amounts of invasive plant propagules
- The role of the <u>settlements</u> are very important secondary infection localities (e.g. abandoned parcells)
- <u>Linear constructions</u> (roads, railways, embankments, bridges, irrigation canals, etc.)
- <u>Fallow lands</u>, unmanaged sites

Spreading routes, infection sources II.

- The <u>Ipoly river</u> continues to extend the invasive species propagules (esp. hydrochoric species)
- The outfall of water inflow (**brooks**) from the hilly areas deliver large amounts of invasive plant propagules
- The role of the <u>settlements</u> are very important secondary infection localities (e.g. abandoned parcells)
- <u>Linear constructions</u> (roads, railways, embankments, bridges, irrigation canals, etc.)
- <u>Fallow lands</u>, unmanaged sites

Spreading routes, infection sources III.

- The <u>Ipoly river</u> continues to extend the invasive species propagules (esp. hydrochoric species)
- The outfall of water inflow (<u>brooks</u>) from the hilly areas deliver large amounts of invasive plant propagules
- The role of the <u>settlements</u> are very important secondary infection localities (e.g. abandoned parcells)
- <u>Linear constructions</u> (roads, railways, embankments, bridges, irrigation canals, etc.)
- <u>Fallow lands</u>, unmanaged sites

Spreading routes, infection sources IV.

- The <u>Ipoly river</u> continues to extend the invasive species propagules (esp. hydrochoric species)
- The outfall of water inflow (<u>brooks</u>) from the hilly areas deliver large amounts of invasive plant propagules
- The role of the <u>settlements</u> are very important secondary infection localities (e.g. abandoned parcells)
- <u>Linear constructions</u> (roads, railways, embankments, bridges, irrigation canals, etc.)
- <u>Fallow lands</u>, unmanaged sites

Spreading routes, infection sources V.

- The <u>Ipoly river</u> continues to extend the invasive species propagules (esp. hydrochoric species)
- The outfall of water inflow (<u>brooks</u>) from the hilly areas deliver large amounts of invasive plant propagules
- The role of the <u>settlements</u> are very important secondary infection localities (e.g. abandoned parcells)
- <u>Linear constructions</u> (roads, railways, embankments, bridges, irrigation canals, etc.)
- <u>Fallow lands</u>, unmanaged sites

Evaluation in community level

• 20 m broad riverside was studied (query is only for naturalised & invasive species)

• Using GIS technologies we generated 53 units (each 1 km long and 50 metres wide) – "ALL", "HU", "SK"

Results

HU: 4,7 INV spec/unit SK: 8,3 INV spec/unit)
Only one unit occur where the SK INV spec number was higher than HU (Unit nr. 27.)

Evaluation in community level - "ALL"

Query for countries • Significant differencies occur (HU-SK)

SK

Query for only the invasive species (altogether 13 species) • Suitable for determinate which sections are the most and least infected

• Key issue for the management

Balassagyarmat

The most infected sections

The least infected sections

"Let us manage or not?"

Thank You for the attention!

Natumegio

